We know our products inside and out — so we’re the ideal lab for testing and calibration, too. You’ll save time and money by making Heise your one-stop shop for product sourcing, calibration, and certification

Heise instruments can be calibrated in an ISO 17025-accredited calibration laboratory, certified by the ANSI-ASQ National Accreditation Board (ANAB). We’re available to certify pressure instruments with ranges from 0.25 inH₂O up to 12,000 psi with accuracies as high as 0.025% of span.

We are also accredited to provide certs for voltage and current measurements as well as pressure module inputs on Heise hand held and bench top calibrators. We have a dedicated lab staffed with technicians who are trained and certified to perform ISO 17025 calibration certifications for any analog pressure gauge, transducer, handheld calibrator base unit, or pressure module that we make. Heise will continue to offer standard NIST traceable CD-4 calibration certificates as well.
Why should you choose Heise for your calibration needs?

ISO/IEC 17025 accreditation is the most important standard used by for calibration and testing laboratories, because it emphasizes the laboratory’s competence and quality assurance. To achieve ISO 17025 accreditation, laboratories must demonstrate that they are technically proficient and able to produce precise and accurate test and calibration data.

Continued ISO 17025 accreditation requires demonstrating all of these competencies through regular reassessments of:

- Traceability of measurements and calibrations to national standards.
- Technical competence of staff.
- Maintenance of test equipment.
- Quality assurance of test and calibration data.
- Validity and appropriateness of test methods.
- Appropriate handling and transportation of test items.
- Quality of testing environment and sampling.

Ready to learn more? Call us today for pricing and availability, and learn how our newly certified laboratory can streamline your calibration and testing processes.

- ISO 17025 Certificates; Pass - Fail decisions are based on binary rule, simple acceptance.